
- 1 -

Algorithm for GPS Navigation, Adapted
for Visually Impaired People

Rosen S. Ivanov

Abstract — The paper presents an algorithm for speech enabled GPS navigation in Bulgarian. The algorithm is part of the
Java mobile application for GPS tracking and navigation. Application is adapted for people with visual disabilities. The
proposed algorithm allows: navigation through a trace of a route in the presence and in the absence of an electronic
compass, embedded in mobile terminals; reducing errors in GPS data using Kalman filtering; adapting navigation to the
current accuracy of GPS receiver; dynamic change of the course; SOS mode - the opportunity to send information about the
current user location via SMS and voice message by MMS. User is informed by Text To Speech (TTS) module for: a need to
change the course; distance and time to reach the end of the route; reaching the target point and a change of status of the
GPS receiver.

Index Terms — GPS outdoor navigation, J2ME applications for blind navigation

—————————— � ——————————

1 INTRODUCTION

he number of people with visual disabi-
lities is around 180 million, of which 45
million are totally blind [1]. Navigation of

people with visual impairment in urban and
suburban environment, necessary for their
normal way of life, are very serious problem
and create social and professional difficulties.
These limitations are partially overcome by the
use of dogs, white canes and by adapting the
environment.

 Current level of mobile communications,
satellite navigation systems and functional
characteristics of mobile terminals allow the
creation of mass available applications for
GPS outdoor navigation, which can be used
by people with visual disabilities. Major prob-
lem in such systems is the insufficient accu-
racy of GPS receivers, mainly due to noise in
GPS data. In the absence of support for the
differential GPS, the noise can be reduced
through the use of information from inertial
sensors and filtering techniques [2], [3].

One of the most commercial mobile appli-
cations for the past years is based on cus-
tomer location - Location Based Services
(LBS) [4], [5]. The majority of applications for
mobile GPS navigation, which can be used by
people with visual disabilities, are developed
in C++ for operating systems such as
Symbian, Windows Mobile and Linux. This
implies the use of mobile terminal such as
smartphones, PDA or Pocket PC, which still
have a high price. There are existing navi-

gation applications for visually impaired peop-
le, such: Drishti [6], Wayfinder Access [7],
Brunel navigation system for blind [8], Street
Talk [9], Mobile Geo [10], and etc., but a
mobile application is not present in Bulgarian
yet.

Mass availability of such application can
be guaranteed when using Java. J2ME is
platform independent technology, that allows
the application to be installed on any mobile
terminal with built-in JVM, which supports the
necessary Java API.

Considering the trend for hardware inter-
pretation of the Java bytecode, such as tech-
nology Jazelle Direct Bytecode eXecution
(DBX) [11], it is not a problem the creation of
applications requiring high JVM performance.

2 ALGORITHM DESIGN

It is proposed to use an external GPS receiver
with Bluetooth™ interface. Such a decision
has the following advantages: still small
number of mobile terminals of the medium
price segment have integrated GPS receiver;
the user has the option to choose a GPS
receiver, taking into account parameters such
as price, sensitivity and accuracy.

Data necessary for the operation of the
navigation algorithm are: GPS status, longitu-
de, latitude, speed and hdop. The sequence of
their obtaining is shown in figure 1.

For communication with the GPS receiver
class GPSProvider is used. It implements
search and communication with any GPS re-
ceiver with Bluetooth™ interface. Search and
connect to GPS receiver are realized without
user interaction.

T

————————————————

� R.S. Ivanov is with the Department of Computer
Systems and Technologies, Technical University of
Gabrovo, BULGARIA. E-mail: rs-soft@ieee.org.

R. S. IVANOV: ALGORITHM FOR GPS NAVIGATION, ADAPTED FOR VISUALLY IMPAIRED PEOPLE

- 2 -

GPS Provider

GPS receiver

Bluetooth interface

Find GPS receiver, parse
NMEA sentences.

Generate GPS data,
depending current mode:
tracking or navigation.

Message “gpsdatafornavi”
Message “gpsdatafortracking”

GPS Dispatcher

Fig. 1. Obtaining the necessary GPS data

Parsing GPRMC, GPGGA, GPGSV and
GPGSA NMEA-0183 sentences, following
GPS data are obtained: status, longitude,
latitude, altitude, speed, direction, hdop and
vdop. Access to the GPS information is
possible through the interface GPSListener.
Class GPSDispatcher, which implements
interface GPSListener, filters GPS position
(adaptive Kalman filter) and speed (1st order
IIR filter) and notify Tracking and Navigation
modules for new data availability. Commu-
nication between classes is realized through
the mailbox. GPSDispatcher class generates
message "gpsdatafornavi", when there are
new data for Navigator module. This message
is generated in the 1.5 to 10 seconds,
depending on the trend of the filtered speed.
Each program module, that should receive
messages, must define method newMessage.

3 ALGORITHM DESCRIPTION

Whenever Navigator module receives
“gspdatafornavi” message, method
NavigationHandler is called (see figure 2).

1. Algorithm NavigationHandler ()
2. if (loadRouteFlag)
3. if (navigate)
4. if (navigationStatusFlag) Navigate(lon,lat,hdop)
5. else StartNavigation(lon,lat)
6. endif
7. endif
8. endif

Fig. 2. Algorithm NavigationHandler

Its task is to call the method Navigate or
StartNavigation, depending on whether the
navigation is started or not. The methods are
called only if the track is loaded (flag
loadRouteFlag is true) and the user has ena-
ble navigation (navigate flag is true).

3.1 Start Navigation

Navigation mode is started if the user current
position is less than a preset distance from
the route. The method StartNavigation uses
the following variables and constants:

direction - defines the direction of the route:
(1) – go to the last route waypoint, (-1) – go
to the first waypoint;
lastPoint - last waypoint number;
lastDistance – last traversed distance in
meters;
lastAlpha – last heading error in degrees;
MAX_DIST - initial value of lastDistance;
MAX_ALPHA - initial value of lastAlpha.
Navigation can be started if the user approa-
ches a track MINDIST_TO_TRACK meters.

Figure 3 shows the coordinate system that

was used for computation of heading error. In
this coordinate system North is 0° and positive
angles are measured clockwise.

user position α1
α2

α

d1

d2

nextPoint

currentPoint

D

North

Fig. 3. User Position

To verify the condition for the start of navi-
gation, nearest track waypoint (currentPoint) is
searched.

The distance to this waypoint (d1 on figure 3
and minDist on figure 4) and the nearest
distance to track (d2 on figure 3 and d on figu-
re 4) if available are calculated. If min(d1,d2) <
MIN_DIST_TO_TRACK (line 13) assumes
that navigation can start (startNavigationFlag
is set true). Otherwise the user is informed
that it is too far from the track (line 32).

The initial values of variables lastDistance
and lastAlpha are set (lines 22-23) and next
waypoint of the track (nextPoint), depending
on the chosen direction, is obtained (lines 19-
20).

If the mobile terminal has a built-in
electronic compass (line 24), the direction
that the user must follow to reach nextPoint is
obtained through getAzimuth method (line
25). The method NavigateToAzimuth notifies
the user to turn round until hear "stop", as
shown on figure 5.

IASK PROCEEDINGS

- 3 -

1. Algorithm StartNavigation (lon,lat)
2. index = 0, pos = 0
3. if (direction = 1) lastPoint=numberOfPoints-1
4. else lastpoint=0
5. endif
6. [index,minDist] = FindNearestTrackPoint(

lon,lat,pathLon,pathLat)
7. d = FindNearestDistToTrackSegment(index-1)
8. if (d < minDist) minDist=d, pos=-1
9. endif
10. d = FindNearestDistToTrackSegment(index+1)
11. if (d < minDist) minDist=d, pos=1
12. endif
13. if (minDist < MIN_DIST_TO_TRACK)
14. if (index = lastPoint)
15. TTS.say(“Last waypoint is reached”)
16. stopNavigation()
17. else
18. startNavigationFlag = true
19. if (pos=-direction) nextPointIndex=index
20. else nextPointIndex=index+direction
21. endif
22. lastDistance = MAX_DIST
23. lastAlpha = MAX_ALPHA
24. if (compassFlag)
25. azimuth = Compass.getAzimuth()
26. navigateToAzimuth(azimuth)
27. else
28. TTS.say(“Compass missing”)
29. endif
30. endif
31. else
32. TTS.say(“Too far from the track”+minDist)
33. endif

Fig. 4. Algorithm StartNavigation

1. Algorithm NavigateToAzimuth (destAzimuth)
2. currAzimuth = -1
3. TTS.say(“Turn round until you hear stop”)
4. while (currAzimut != ±5%(destAzimuth))
5. currAzimuth = Compass.getAzimuth()
6. wait(2sec.)
7. endwhile
8. TTS.say(“Follow this direction”)

Fig. 5. Algorithm NavigateToAzimut

Depending on the distance d2 user navigates
to next waypoint or point D. In the absence of
electronic compass the user is necessary to
walk certain distance to determine the di-
rection. The value of the direction, obtained
from GPS receiver can not be used, because
if the speed is less than 10km/h the error is
too large.

3.2 Navigation

After setting the flag navigationStartedFlag
method NavigationHandler starts to call
method Navigate (see figure 6). It is used to
perform the waypoint following task and to
inform the user with voice for necessary
direction adjustment. The heading error is the
difference between the heading to the goal
waypoint (angle α1) and the user’s current
heading (angle α2), α=α2-α1. If α>0, the co-

rrection of the course should be α degrees
in right, and if α<0 - α degrees in left. If
α→0 is assumed that the user follows the
correct direction.

1. Algorithm Navigate (lon,lat,hdop)
2. if (hdop > 5.0) return
3. endif
4. MIN_DIST_POINT_TO_POINT = 10*hdop+15
5. elapsedDistance = GPS.distance(lon,lat,

pathLon[nextPointIndex],pathLat[nextPointIndex]
6. if

(elapsedDistance>MIN_DIST_POINT_TO_POINT)
7. ALPHA_MIN = 15
8. else
9. ALPHA_MIN = 35
10. endif
11. if (elapsedDistance<MIN_DIST_TO_POINT)
12. if (nextPointIndex=lastPoint)
13. TTS.say(“Last point reached”)
14. stopNavigation()
15. return
16. else
17. currPointIndex=nextPointIndex
18. nextPointIndex=findNextPoint()
19. elapsedDist=GPS.dist(lon,lat,

pathLon[nextPointIndex],pathLat[nextPointIndex]
20. alpha=GPS.bearingToNextPoint(currPoint,

 nextPointIndex)
21. if (alpha > 0)
22. TTS.say(“Turn right”+abs(alpha)+”degree”)
23. elseif (alpha < 0)
24. TTS.say(“Turn left”+abs(alpha)+”degree”)
25. else
26. TTS.say(“Go ahead”)
27. endif
28. else
29. alpha=GPS.bearingToNextPoint([lon,lat],

 nextPointIndex)
30. if (alpha < ALPHA_MIN) alpha = 0
31. endif
32. if (elapsedDistance > (lastDistance +

MIN_DIST_POINT_TO_POINT))
33. if (abs(alpha - lastAlpha) < 15)
34. TTS.say(“Go back”)
35. else
36. TTS.say(“Stray from the route”)
37. endif
38. else
39. if (alpha > 90)
40. if (nextPointIndex = lastPoint)
41. TTS.say(“Last point reached”)
42. stopNavigation()
43. return
44. else
45. TTS.say(“You pass point”+nextPointIndex)
46. nextPointIndex=nextPointIndex+direction
47. endif
48. else
49. if (alpha > 0)
50. TTS(“Turn in right”+abs(alpha),

 ”degree, remain”,
 elapsedDistance+“meters”)

51. elseif (alpha < 0)
52. TTS(“Turn in left”+abs(alpha),

 ”degree, remain”,
 elapsedDistance+“meters”)

53. else
54. TTS(“Go ahead”,

elapsedDistance+”meters”)
55. endif
56. endif
57. endif
58. endif
59. lastDistance = elapsedDistance
60. lastAlpha = abs(alpha)

Fig. 6. Algorithm Navigate

R. S. IVANOV: ALGORITHM FOR GPS NAVIGATION, ADAPTED FOR VISUALLY IMPAIRED PEOPLE

- 4 -

Navigate method returns when current
GPS accuracy is too low (line 2). The user is
informed of this situation by TTS module.

The value of parameter
MIN_DIST_POINT_TO_POINT is obtained
adaptively, depending on the value of hdop
(line 4). The parameter is used to set
minimum value of α - ALPHA_MIN (lines 6-
10), and by method findNextPoint.

If the distance to next waypoint (nextPoint)
is less than MIN_DIST_TO_POINT is assu-
med that waypoint is reached (line 11). In this
case algorithm checks (line 12) if next
waypoint is last waypoint (lines 13-15) or not
(lines 17-26). If this waypoint is not last
waypoint next waypoint is obtained (line 18)
and heading error is calculated (line 20).

If the next waypoint is not reached (lines
29-57) direction to follow to reach nextPoint
is calculated (line 29). The algorithm informs
user if it is moving in the opposite direction
(line 34) or if the heading error is too big (line
36). The user is informed if next waypoint if
passеd (lines 45-46), otherwise voice naviga-
tion is realized (lines 49-55).

When last waypoint is reached (lines 13
and 41) navigation is stopped by calling
method StopNavigation (see figure 7).

1. Algorithm StopNavigation ()
2. navigate = false
3. navigationStatusFlag = false

Fig. 7. Algorithm StopNavigation

4 EXPERIMENTAL RESULTS

The proposed algorithm is part of J2ME app-
lication for GPS outdoor navigation, adapted
for people with visual disabilities.

Application can be installed on any mobile
terminal with JVM and: profile MIDP 2.0,
configuration CLDC 1.1, Bluetooth API (JSR-
82), Mobile Media API (JSR-135), Wireless
Messaging API (JSR-120) and File Connec-
tion API (JSR-75). The package Wireless
Messaging API ver.2.0 (JSR-205), which is
used to send MMS messages, is optional.

Since the application makes access to
protected resources (Bluetooth interface, file
system, and etc.) it is needed to be signed.
This prevents the need for confirmation that
the user is agrees with access to any protect-
ted resource.

The user can access the most important
information in Navigation mode with the keys
of the mobile terminal (see Table 1).

TABLE 1
KEYS USED IN NAVIGATION MODE

Key Description

0 GPS data and status
1 Send SOS (SMS or MMS)
3 Distance to next waypoint
5 Last navigational information
7 Change the direction
9 Distance and time to reach target

waypoint
* Start/Stop TTS
Record audio landmark

The results, obtained when testing the
application in navigation mode, are shown in
figure 8 (mobile terminal Nokia N95 is used).

a) b)

c) d)

e) f)

Fig. 8. Experimental results: a) select a track from list; b)
navigation can not be started, because the user is so far
from the track (92m); c) direction correction - 30° in right;
d) go ahead (62m); e) waypoint 10 has reached – turn
46° in right; f) last waypoint is reached.

- 5 -

5 CONCLUSION

In the paper a speech enabled GPS navi-
gation algorithm in Bulgarian is presented.
The algorithm is part of the Java mobile
application for GPS outdoor navigation, ada-
pted for people with visual disabilities.

The proposed algorithm has the following
advantages:

1. Ability to work without GPS maps. In
Тracking mode visually impaired user walks
through a route with additional person. Du-
ring this walk, GPS information for track way-
points a stored on flash disk of mobile ter-
minal.

2. Navigation is adaptive to the current
accuracy of GPS receiver.

3. Changing the direction can be realized
at any time.

4. User can pass track’s waypoints.
5. User is informed for the necessary ad-

justments of the direction of movement in
degrees.

6. User can send SOS messages in the
form of SMS (username, GPS status, longi-
tude, latitude, altitude, date and time) or
MMS (the information from the SMS and
voice message).

7. User can record voice landmarks.
8. Information from an electronic compass,

if it is available, can be used.

REFERENCES

[1] http://laico.org/v2020resource/files/vision2020_jul-
sep01.pdf. 2008.

[2] M.H. Bruch, et al., Accurate Waypoint Navigation
Using Non-differential GPS, AUVSI Unmanned
Systems, 2002.

[3] M.H. Grewal, L.R. Weill, A.P. Andrews, Global Po-
ssitioning Systems, Inertial Navigation, and Integ-
ration, John Wiley & Sons, NY, 2001.

[4] http://www.mobilein.com/location_based_services.h
tm. 2009.

[5] http://www.forum.nokia.com/Resources_and_Infor
mation/Explore/Mobile_Technologies/Location-
Based_Services/. 2008.

[6] L. Ran, S. Helal, S. Moore, “Drishti: an Integrated
Indoor/Outdoor Blind Navigation System and
Service”, Proc. of the 2nd IEEE Annual Conference
Pervasive Computing and Communications, pp.23-
30, 2004.

[7] http://www.mywayfinder.com/manual/access/en/
main.html. 2008.

[8] http://dea.brunel.ac.uk. 2009.
[9] http://www.freedomscientific.com/products/fs/streett

alk-gps-product-page.asp. 2009.
[10] http://www.codefactory.es/en/. 2008.
[11] http://www.arm.com/products/multimedia/java/jazell

e.html. 2008.

Rosen S. Ivanov received the Electronics Engineering
degree from the University of Gabrovo, Bulgaria. He
received the Ph.D. degree from the University of Sofia,
Bulgaria, in 2000. He is currently Associate Professor of
Computer Systems and Technologies at University of
Gabrovo, Bulgaria. He is the author of five books and
over than 40 technical papers. His research interest
include mobile communications and digital signal pro-
cessing.

