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1. INTRODUCTION 

The contemporary electronic systems are complex ones, 
built up of a lot of components. Within the automated design 
of such systems methods aiming at reducing both the 
designing time and the problem’s complexity are under search 
and application. A method of these is concerns the principles 
of decomposition and hierarchy. 

Decomposition is spreading as a common technique for 
reducing the complexity of all tasks and problems in 
elaborating the hardware and software parts of the systems. 

The dividing of systems is usually carried through in a way, 
which forms functionally independent units. Digital systems, 
for instance, are built up of a large number of sub-systems 
(modules). Each module has a set of ports, which constitute its 
interface to the outside world. A digital system is usually 
designed as a hierarchical collection of modules. 

The present papers discuss the opportunity for developing 
of the models based on most popular Intel processor through 
behavioral hardware description. 

The paper describes are structural and behavioral VHDL 
models of the processor Intel Pentium.  

2. ADVANCED VHDL 

VHDL is a Hardware Description Language for describing 
digital electronic system. 

VHDL is designed to full a number of needs in the design 
process. Firstly, it allows description of the structure of a 
design that is how it is decompressed into sub-designs, and 
how those sub-designs are interconnected. Secondly, it allows 
the specification of the function of designs using familiar 
programming language forms. Thirdly, as a result, it allows a 
design to be simulated before manufactured, so that designers 
can quickly compare alternatives and test for correctness 
without delay and expense of hardware prototyping. 
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VHDL contains a number of facilities for modifying the 
state of objects and controlling the flow of execution of 
modules. 

In VHDL, an entity is such a module which may be used as 
a component in a design, or which may be the top-level 
module of the design. The entity declarative part may be used 
to declare items, which are to be used in the implementation 
of the entity.  

Once an entity has had its interface specified in an entity 
declaration, one or more implementations of the entity can be 
described in architecture bodies. Each architecture body can 
describe a different view of the entity. 

The declarations in the architecture body define items that 
will be used to construct the design description. 

Signals are used to connect sub modules in a design. The 
sub modules in an architecture body can be described as 
blocks. A block is a unit of module structure, with its own 
interface, connected to other blocks or ports by signals. A 
signal assignment schedules one or more transactions to a 
signal (or port). 

The primary unit of behavioral description in VHDL is the 
process. A process is a sequential body of code, which can be 
activated in response to changes in state.  When more than 
one process is activated at the same time, they execute 
concurrently. 

A process statement which can be used in an architecture 
body or block. The declarations define items which can be 
used locally within the process. 

A process may contain a number of signal assignment 
statements for a given signal, which together form a driver for 
the signal. 

VHDL descriptions write them in a design file. After then 
invoke a compiler to analyze them and insert them into a 
design library. A number of VHDL constructs may be 
separately analyzed for inclusion in a design library. These 
constructs are called library units. A design file may contain a 
number of library units. 

There are two special libraries which are implicitly 
available to all design units, and so do not need to be named 
in a library clause. The first is called work, and refer to the 
working design library into which the current design units will 
be placed by the analyzer. 

The second special library is called STD, and contains the 
packages standard. Standard contains all of the predefined 
types and functions.  

3. Architecture of the Pentium Processor  

The Pentium is fully compatible with previous Intel 
processor, but it also different from them in many ways.  

The Pentium processor internal architecture is shows on the 
fig. 1 



 
 

Fig.1 Pentium processor internal architecture 
 

The Pentium features twin data pipelines, which enable it to 
execute two instructions at a same time.  Intel calls the 
capability to execute two instructions at the same time 
superscalar technology. This technology provides additional 
performance compared with the 486. 

With superscalar technology, the Pentium can execute 
many instructions at a rate of two instructions per cycle. 
Superscalar architecture usually is associated with high-output 
RISC chips. The Pentium is one of the first CISC chips to be 
considered superscalar. 

The two instruction pipelines within the chip are called the 
u- and v-pipes. The u-pipe, which is the primary pipe, can 
execute all integer and floating-point instructions. The v-pipe 
is a secondary pipe that can execute only simple integer 
instructions and certain floating –point instructions. The 
process of operating on two instructions simultaneously in the 
different pipes is called pairing. Not all sequentially executing 
instructions can be paired, and when pairing is not possible, 
only the u-pipe is used. To optimize the Pentium’s efficiency, 
you can recompile software to allow more instructions to be 
paired.  

The Pentium processor has a Branch Target Buffer (BTB), 
which employs a technique called branch predication. It 
minimizes stalls in one or more of the pipes caused by delays 
in fetching instructions that branch to non-linear memory 
locations. The BTB attempts to predict whether a program 
branch will be taken, and then fetches the appropriate 

instructions. The use of branch prediction enables the Pentium 
to keep both pipelines operating at full speed. 

The Pentium has a 32-bit address bus width, given it the 
same 4GB memory-addressing capabilities. But the Pentium 
expands the data to 64 bits, which means that it can more 
twice as much data into or out of the CPU. The 66-bit data bus 
requires that system memory be accessed 64 bits wide, which 
means that each bank of memory is 64 bits. 

Most Pentium systems use 32-bits wide SIMMs – two of 
these SIMMs per bank of memory. Most Pentium 
motherboards have at least four of these 32-bit SIMM sockets, 
providing for a total of two banks of memory. The newest 
Pentium systems and most Pentium II systems today use 
DIMMs, which are 64 bits wide. 

The Pentium has only 32-bit internal registers. As 
instructions are being processed internally, they are broken 
down into 32-bit instructions and data elements. 

The Pentium has two separate internal 8KB caches, 
compared with a single 8KB or 16KB cache in the 486. The 
cache-controller circuitry and the cache memory are 
embedded in the CPU chip. The cache mirrors the information 
in normal RAM by keeping a copy of the data and code from 
different memory locations. The Pentium cache also can hold 
information to be written to memory when the load on the 
CPU and other system components is less. 

The separate code and data caches are organized in a two-
way set associative fashion, with each set split into lines of 32 



bytes each. Each cache has a dedicated Translation Lookaside 
Buffer (TIB) that translates linear addresses to physical 
addresses. You can configure the data cache as write-back or 
write-through on a line-by-line basis. When you use the write-
back capability, the cache can store write operations and 
reads, further improving performance over read-only write-
through mode. Using write-back mode results in less activity 
between the CPU and system memory. The code cache is an 
inherently write-protected cache because it contains only exe-
cution instructions and not data, which are updated. 

Systems based on the Pentium can benefit greatly from 
secondary processor caches (L2), which usually consist of up 
to 512KB or more of extremely fast (15ns or less). Static 
RAM (SRAM) chips. When the CPU fetches data that is not 
already available in its internal processor (LI) cache, wait 
states slow the CPU. If the data already is in the secondary 
processor cache, however, the CPU can go ahead with its 
work without pausing for wait states. 

The Pentium uses a BiCMOS process and superscalar 
architecture to achieve the high level of performance expected 
from the chip. 

The Pentium contains an internal math coprocessor or FPU. 
The FPU in the Pentium has been rewritten and performs 
significantly better than the FPU in the 486. The Pentium FPU 
is estimated at two to as much as 10 times faster than the FPU 
in the 486. In addition, the two standard instruction pipelines 
in the Pentium provide two units to handle standard integer 
math.  

4. VHDL MODELS 

In this section a behavioral and structural VHDL models of 
the Pentium processor be presented. This model can be used 
to run test programs in the Pentium instruction set by 
connecting it to a simulated memory model. 

The processor instruction set and bus architectures are first 
described. Then a behavioural description is given. 

The package body or the Pentium_types is listed in fig.2 
package body or the Pentium_types is 

constant bool_to_bit: bool_to_bit_table:= 
(false => '0', true => '1'); 

function resolve_bit_32  
(driver: in bit_32_array) return bit_32 is 
constant float_velue: bit_32:=X”0000_0000”; 
variable result: bit_32:= float_velue; 

begin  
for i in driver’range loop 

result:=result or driver(i); 
end loop; 
return result; 

end resolve_bit_32; 
Fig.2. Package body for Pentium_types 

The body or the resolution function for 32-bit buses is 
defined. The function takes as its parameter an unconstrained 
array of bit_32 values, and produces as a results the bit-wide 
logical or of the values. The function cannot assume that the 
length of the array will be greater than one. If no drivers are 

active on the bus, an empty array will be passed to the 
resolution fiction. In this case, the defaults value of all '0' 
(float_value) is used as the result. 

The function bits_to_int converts a bit vector representing a 
twos-compliment signed integer into an integer type value. 
The local variable temp is declared to be a bit vector of the 
same size and index range as the parameter bits. The variable 
result is initialized to zero when the function is invoked, and 
subsequently used to accumulate the weighted bit values in 
the loop.  

The entity declaration of the Pentium processor is shown in 
fig.3.      

use work.Pentium_types all; 
entity Pentium is 

generic (Tpd: Time:=unit_delay); 
port (d-bus: inout bus_bit_64 bus; 

a_bus: out bit_32; 
read, write: out bit; 
fetch:  out bit; 
ready: in bit; 
p1, p2: in bit; 
reset: in bit); 

end Pentium; 
Fig.3. Entity declaration for Pentium processor  

 The architecture body for the behavioral description is: 
use work.Pentium types.all; 
architecture behaviour of .Pentium is 
 subtype reg_addr is natural range 0 to 255; 

type reg_array is (reg_addr) array of bit_32; 
begin  
process 

 variable reg: reg_array; 
 variable PC: bit_32; 

variable current_instr: bit_32; 
variable op: bit_8; 
variable r3, r1, r2: reg_addr; 
variable i8: integer; 
alias cm_i: bit is current_instr(19);  
alias cm_V: bit is current_instr(18); 
alias cm_N: bit is current_instr(17); 
alias cm_Z: bit is current_instr(16); 
variable cc_V, cc_N, cc_Z: bit; 
variable temp_V, temp_N, temp_Z: bit; 
variable displacsement, effective_addr: bit_32; 

procedure memory_read (addr: in bit_32; 
                   fetch_cycle: in Boolean; result: out bit_32) is 
end memory_read; 
procedure memory_write(addr: in bit_32;data: in bit_32) is 
end memory_ write; 
procedure add (result : inout  bit_32; 
                             op1, op2: in integer;  V, N, Z : out bit) is 
end add; 
procedure multiply (result : inout  bit_32;   
         op1, op2: in integer; V, N, Z : out bit) is 
end multiply; 

 end process; 
end behavior; 

Fig.4. Behavioral description for Pentium processor 



The declaration section for the architecture body contains 
the declaration for the DP32 register file type, and array of 32-
bit words, indexed by a natural number constrained to be in 
the range 0 to 255. 

The architecture body contains only one concurrent 
statement, namely an anonymous process which implements 
the behaviour as a sequential algorithm. This process declares 
a number of variables, which represent the internal state of the 
processor: the register file, the program counter (PC), and the 
current instruction register. A number of working variables 
and aliases are also declared. 

The procedure memory read implements the behavioural 
model of a memory read transaction. The parameters are the 
memory address to read from, a flag indicating whether the 
read is an instruction fetch, and a result parameter returning 
the data read. The procedure refers to the entity port, which 
are visible because they are declared in the parent of the 
procedure. 

The memory read model firstly drives the address and fetch 
bit ports, and then waits until the next leading edge of p1, 
indicating the start of the next clock cycle. (The wait 
statement is sensitive to a change from ‘0’ to ‘1’ on p1). When 
that event occurs, the model checks the state of the reset input 
port, and if it is set, immediately returns without further 
action. If reset is clear, the model starts a T1 state by asserting 
the read bit port a propagation delay time after the clock edge. 
It then waits again until the next p1 leading edge, indicating 
the start of the next clock cycle. Again, it checks reset and 
discontinues if reset is set. The model then starts a loop 
executing T2 states. It waits until p2 changes from ‘0’ to ‘1’ 
(at the end of cycle), and then checks reset again, returning if 
it is set. Otherwise it checks the ready bit input port, and if set, 
accepts the data from the data bus port and exit the loop. If 
ready is not set, the loop repeats, adding another T2 state to 
the transaction. After the loop, the model waits for the next 
clock edge indicating the start of the Ti state at the end of the 
transaction. After checking reset again, the model clears ready 
to complete the transaction, and returns to the parent process. 

The procedure memory write is similar, implementing the 
model for a memory write transaction. The parameters are 
simply the memory address to write to, and the data to write. 
The model similarly has reset checks after each wait point. 
One difference is that at the end of the transaction, there is a 
null signal assignment to the data bus port. This models the 
behaviour of the processor disconnecting from the data bus, 
that is, at the point it stops driving the port. 

The entity declaration and behaviour architecture of the 
memory module are show in this section. 
entity memory is 
 genetic (Tpd : Time := unit_delay); 
 port (d_bus : inout bus_bit_32 bus; 
  a_bus : in bit_32; 
  read, write : in bit; 
  ready : out bit); 
end memory; 

architecture behaviour of memory is 
begin 
   process 
 constant low_address : integer :=0; 

 constant high_address : integer :=65535; 
 type memory_aray is 
    array (integer range low_address to high_addres) 

of bit_32; 
 variable mem : memory_array; 
 variable address : integer; 
    begin 
 d_bus <= null after Tpd; 
  ready <= '0' after Tdp; 
 wait until (read = '1' ) or (write = '1' ); 
       address := bits_to_int (a_bus); 

 if address >= low_address and address <=      
high_address then 

 if write = '1' then 
  ready <= '1' after Tpd; 
  wait until write = '0';          
  mem (address) := d_bus'delayed(Tpd);      
 else  -- read = '1' 
  d_bus <= mem (address) after Tpd; 
   ready <=  '1' after Tpd; 
  wait until read = '0'; 
 end if; 
       end if; 
    end process; 
end behaviour. 

Fig.5. Structural and bbehavioural models for memory module 

5. CONCLUSION 

In this paper a structural and behavioral models of the 
processor Intel Pentium will be presented. Descriptions will 
be given for each of the sub-modules in this architecture 
(fig.1). They will be used in a structural architecture body of 
the processor entity. 

The declaration section for the architecture body contains 
the declaration for the Intel processor registry file type and 
array of 32-bit words. 

The architecture body contains only one concurrent 
statement, namely an anonymous process which implements 
the behavior as a sequential algorithm. This process declares a 
number of variables, which represent the internal state of the 
processor: the register file, the program counter, and the 
current instruction register. A number of working variables 
and aliases are also declared. 

The present model can use to run test programs in the Intel 
Pentium processor instruction set by connecting it to a 
simulated memory model. 
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