
‘

07

INTERNATIONAL SCIENTIFIC CONFERENCE
23 – 24 November 2007, GABROVO

IMPLEMENTATION OF SOFT-CORE PROCESSORS IN FPGAs

Petar Borisov Minev Valentina Stoianova Kukenska
 Technical University of Gabrovo Technical University of Gabrovo

Abstract

Field programmable gate arrays (FPGAs) provide designers with the ability to quickly create hardware circuits. Increases
in FPGA configurable logic capacity and decreasing FPGA costs have enabled designers to more readily incorporate FPGAs
in their designs. FPGA vendors have begun providing configurable soft processor cores that can be synthesized onto their
FPGA products. While FPGAs with soft processor cores provide designers with increased flexibility, such processors typically
have degraded performance and energy consumption compared to hard-core processors. In this paper, we study the
implementation of soft-core processors in FPGAs, and some of the decisions and design tradeoffs which must be made during
the design process.

Keywords: soft-cores, soft-processors, FPGA, embedded systems.

1. INTRODUCTION

 Microprocessors on field-programmable
gate array (FPGA) chips are becoming an
increasingly popular software implementation
platform, due to their coexistence on-chip with
custom logic. Such coexistence can reduce parts
costs and board sizes, and can improve system
performance due to reduced communication
times between processor and FPGA. A hard-core
processor is laid out on the chip next to the
FPGA’s configurable logic fabric. In contrast, a
soft-core processor is synthesized onto the
FPGA’s fabric, just like any other circuit.
Compared to hard-core microprocessors on some
FPGA devices, soft-core processors have the
advantages of utilizing standard mass-produced
and hence lower-cost FPGA parts and of enabling
a custom number of microprocessors per FPGA
(subject to size constraints) – over 100 soft-core
processors can fit on modern high-end FPGAs.
However, soft-core processors have the
disadvantages of reduced processor performance,
higher power consumption, and larger size [1].

While any microprocessor soft-core could
conceivably be mapped to an FPGA, FPGA
vendors have in the past years introduced soft-
core processors specifically targeted for FPGA
implementation. Such FPGA soft-cores have
instruction sets, arithmetic-logic units, register
files, and other features specifically tailored to
efficiently use FPGA resources, or perhaps more
accurately, to avoid inefficient use of FPGA
resources that may occur when synthesizing a
general soft-core processor to an FPGA. The

performance overhead of such soft-core
processors on FPGAs compared to general soft-
core processors on ASICs (application-specific
integrated circuits) can thus be significantly less
than the overheads when comparing FPGA versus
ASIC implementations of general circuits [1].

A feature of FPGA soft-core processors is that
of core configuration by the user (the application
developer) through the setting of parameters.
Configurable parameters may include
instantiating a cache (and specifying its size), or
instantiating a predefined datapath unit (like a
multiplier or floating-point unit) and an
accompanying instruction that uses the
instantiated unit. Parameterized soft cores
represent a different problem from that of
developing custom datapath units and
accompanying custom instructions, as done in
application-specific instruction-set processors
(ASIPs) like the ASIC-oriented ASIPs or FPGA-
oriented ASIPs, due to the “on/off” (or limited
number of) values of the parameters [1].

2. EXAMPLES OF SOFT PROCESSOR
CORES

Today, we are witnesses of the emerging of
many commercially soft-core processors, as well
as supporting and development tools; some of
principal products available are: Altera
Nios/NiosII, LatticeMico32, and Xilinx
MicroBlaze. They offer memory and logic
elements with several Intellectual Property (IP)
peripherals for the rapid development of System-
on-Programmable-Chip (SoPC) [2].

2.1 MicroBlaze Soft Processor Core
A popular soft processor core example is

Xilinx’s MicroBlaze that can be customized with
different peripheral and memory configurations.
This soft processor core is a 32-bit Reduced
Instruction Set Computer (RISC). This processor
has a three-stage pipeline with variable length
instruction latencies, typically ranging from one
to three cycles. The tool used to accomplish the
design is denominated Xilinx Platform Studio and
with this friendly environment we are able to
create a MicroBlaze based system instantiating
and configuring cores from the provided libraries.

MicroBlaze was constructed around Harvard
memory architecture. The 2 Local Memory
Busses (LMB) are used to connect the instruction
and data memories. The sizes of this memory as
well as the number of peripheral used in a
particular design are defined by the user.
Additionally the On-Chip-Peripheral Bus is used
to alleviate systems performance bottlenecks and
is designed to support low-performance/speed
peripherals such as UART, GPIO, USB, external
bus controllers. A MicroBlaze system is
presented in Fig. 6 as a good example of this
technology.

The MicroBlaze can operate at up to 200 MHz
within a Virtex-4 (4VLX40-12) component. The
range of resources required to implement a
MicroBlaze soft processor is between 900 and
2,600 Xilinx Look-Up Tables (LUTs), depending
on how the processor is configured [2].

2.2 NIOS II Soft Processor Core
An another popular soft core processor

example is Altera's NIOS II that has a load-store
RISC architecture, in which many architectural
parameters can be customized at design time. The
user can decide between 16 or 32 bits of width in
datapath, register file sizes; as well as cache size
and custom instructions for the performing of
user-defined operation in the speeding-up
customized hardware. Those functionalities are
supported by the builder development tools, and
using the Nios II Integrated Development
Environment (IDE) is possible to build, run, and
debug software of several platforms. Altera also
introduces a SOPC builder [38], for the rapidly
creation and easily evaluation of embedded
systems. The integration off-the-shelf intellectual
property (IP) as well as reusable custom
components is realized in a friendly way,
diminishing the required time to set up a SoC and

enabling to construct and designs in hours instead
of weeks [2].

2.3 Mico32 Soft Processor Core
Both Xilinx and Altera created their own

proprietary soft core processors, making the
decision to accept a tougher adoption curve in
exchange for saddling customers with an IP block
that tended to lock their design into that particular
FPGA vendor’s devices.

Like Xilinx’s MicroBlaze and Altera’s Nios,
Lattice’s Mico32 is a soft-core RISC processor
that can be easily dropped into an FPGA. Unlike
the others, however, Mico32 is completely open
[3]. Rather than take the lock-’em-in approach of
their competitors, Lattice has gone the open
source route, cleverly betting that enabling
processor-based designs on their devices was
much more important than locking customers into
their architecture with an IP core.

LatticeMico32 uses fewer than 2,000 look-up
tables (LUTs) on an FPGA, which makes it a
very inexpensive engine for your embedded
design. Because the processor is soft, you can
configure it with just the options you want for
your application. Optional features include things
like data and instruction caches, user-defined
instructions, and multipliers. This kind of
application-specific customizability as well as the
flexibility to add any number of processors to
your design with only a small area penalty is the
kind of flexibility that has made FPGA-based soft
cores so popular among designers. Mico32
weighs in with 32 general-purpose registers, up to
32 external interrupts, and a dual Wishbone
memory interface. Lattice estimates that the
processors can run at over 100MHz on their low-
cost 90nm ECP2 FPGAs.

In keeping with the open-source approach,
Lattice chose the public domain Wishbone bus
interface for Mico32 and has already announced a
variety of available peripherals, including
memory controllers, asynchronous SRAM, on-
chip block memory, I/O ports, a 32-bit timer, a
DMA controller, general-purpose I/O (GPIO), an
I2C master controller, a serial peripheral interface
(SPI), and a UART. These plug-on peripherals
dramatically speed up system design, eliminating
the need to custom-code many of the common
hardware functions if you’re building a Mico32-
based embedded system [3].

3. DESIGN CONSIDERATIONS

3.1 Performance and Power
Two potentially critical system factors include

the desired functionality and operational
performance as well as the power required to
implement the desired system functionality.
There will typically be a delta between the power
consumption and level of performance for fixed
function processor implementations and
potentially more flexible FPGA-based soft
processor cores.

In order to compare the relative performance
of soft processor cores a common processor
benchmark approach must be used. Currently the
most common benchmark is the DMIPS
(Dhrystone Million Instructions Per Second)
benchmark. The DMIPS benchmark is based on
running an algorithm on a targeted processor core
to measure its integer processing capabilities
within a defined time period.

Additional performance considerations include
the architecture of the soft processor core and its
suitability for the targeted application. Factors to
evaluate include: type and size of the memory
and peripheral bus; size and model of address
space; type and size of cache (instruction/data);
type of controllers like DMA and interrupt
structure; hardware accelerator capability
(co-processor functionality); functional units such
as the register file and execution units; type of
pipeline and strategies to prevent stalls such as
branch prediction.

Several factors influence power consumption
including speed of operation, the number and
type of resources required to implement the soft
processor core and the characteristics of the
FPGA component including static and dynamic
power consumption vs. operational speed and
temperature. One of the challenges associated
with FPGA design is the difficulty of estimating
power consumption. In an ideal development
flow, schedule and resources will be allocated to
design evaluation on a targeted development
platform with an identical target FPGA
component and soft processor implementation
[4].

3.2 Design and Development Tools
The features and ease of use of the tool suite

should be considered along with the tool design
flow. Effective tool evaluation and analysis is
important. The following factors can have a
significant effect on design cycle efficiency: ease
of use and feature set; design tool flow;

development environment tool maturity;
compatibility between major software releases;
available training and quality of tool tutorials;
debug and verification capabilities [4].

The tool suite (Figure 1) includes a collection
of traditional software and FPGA design and
development tools. The interaction between these
two tool groups is commonly referred to as co-
design or platform development tool. The
software and soft processor core development
tools are responsible for the parameterization of
the soft core and associated peripherals and the
implementation of processor buses, memory
maps, interrupt structures and required processor
peripherals. The software tools also include
traditional compilation, linking, debug and
download to the target processor.

FPGA design tools include the traditional
development environments for capturing and
synthesizing HDL code, simulation, place and
route, debug and download of the design to the
target FPGA platform.

3.3 Operating System Considerations
Another important design factor is the ability

to utilize popular operating systems (OSs). Most
embedded designs on 32-bit processors include
an OS to reduce the design time of the software
by providing an abstraction interface level to the
software. Most operating systems include the OS
and any lower-level software required to connect
the OS to the hardware. This collection of
software elements is commonly referred to as a
board support package (BSP) (Figure 1). The
BSP can include items such as the processor boot
code and interrupt service routines for
peripherals.

Fig. 1

Platform Development Tool
(Co-Design)

Software Development Tools

FPGA Design and
Development

Target Board

Instruction Set

Simulator

Flash

FPGA

HDL Description Debug

Compiler Assembler

Linker

Debugger

Program

Processor
configuration

HW
Platform

HDL Entry

Simulation

Synthesize

Place and
Route

Debug
Debug

Generate Platform
Description in

HDL

BSP

Some important OS considerations include
interrupt latency, kernel size, implementation of a
robust set of services, and a collection of full-
featured middleware. Some example middleware
components include: USB stack; TCPI/IP stack;
embedded web server; encryption algorithms;
wireless Ethernet connection.

Other items which should be considered when
selecting an OS include the API set, level of IDE
integration, tasking models, kernel robustness,
pre-emption, resource allocation, protection
schemes and OS footprint.

Processor cores typically have a list of
certified operating systems that have been pre-
verified. If the design team does not have
experience with the selected OS, it is
advantageous for the team to be trained on the
specifics of the OS to reduce development time
and eliminate issues that could be encountered
during development. Typical OS components
include: task services; priority levels; timer
management; memory management; application
programmers interface (API); inter-task
communication and synchronization [4].

3.4 Debug Options and Capability
The debug phase of a design will be iterative

by nature and can consume a significant
percentage of a design schedule without the
correct tools and design access. The ability to
efficiently debug a design can save weeks design
effort and schedule. Robust debug features and
capability are very important design efficiency
factors. Some of the most effective tools for
debugging a soft processor core design include:
simulation (behavioral and timing); timing
analysis; embedded logic analyzers and
embedded bus analyzers; software simulators;
non-intrusive real-time software debugger; trace
capability; Hardware/Software logic analyzer
triggers; board-level visual indicators, signal
access ports and input control signals;
standardized debug interface via JTAG bus [4].

3.5 Common Design Oversights
The following design factors are often

overlooked by design teams new to implementing
embedded FPGA soft processors. These factors
should be given special consideration during each
design cycle. Making a mistake in any of these
areas may result in a significant impact to a
project's cost or schedule.

Power consumption: Verify consumption on
an evaluation board before final target board
design and layout; Underestimating the FPGA

resources required to implement the complete soft
processor solution including all peripherals and
bus structures: Implement design and analyze
utilization report; Incomplete understanding of
the impact of a soft processor’s bus structure,
memory interface overhead and peripheral
interface speed on overall performance: Verify
performance and functionality by implementing a
design on a target evaluation board early in the
design cycle; Not implementing or maintaining
sufficient design margin for design migration and
expansion: Select target FPGA components with
room for growth with a common package to
support potential future design enhancements [4].

4. CONCLUSION

This paper presents the implementation of
soft-core processors in FPGAs, and some of the
decisions and design tradeoffs which must be
made during the design process. Making
informed decisions during the design process
reduces the time required to design, implement,
debug and test an FPGA soft processor-based
project. Important design factors are reviewed,
common design oversights are discussed and soft-
cores examples is presented.

Soft processor design teams will benefit from
a system-oriented design approach, which
considers the long-term effects of design
decisions at each design phase. With a solid
understanding of the overall design cycle,
development tools options, and benefits of key
design trade-studies, the design team can avoid
many common design mistakes and oversights
resulting in a more efficient and flexible design
cycle.

5. REFERENCES
[1] Sheldon, D., R. Kumar, F. Vahid, R. Lysecky, D.

Tullsen, Application-Specific Customization of
Parameterized FPGA Soft-Core Processors,
International Conference on Computer-Aided
Design, ICCAD, San Jose, November 2006.

[2] Calderón, H., C. Elena, S. Vassiliadis, Soft Core
Processors and Embedded Processing: a survey
and analysis, Proceedings of -ProRISC, pp. 483-
488, Veldhoven, The Netherlands, November
2005.

[3] Morris K., Soft Core War LatticeMico32 Opens
the Field, FPGA and Structured ASIC, September
26, 2006.

[4] Cofer, R.C., B. Harding, FPGA Soft Processor
Design Considerations, Programmable Logic
DesignLine, October 12, 2005.

