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Abstract 

Field programmable gate arrays (FPGAs) provide designers with the ability to quickly create hardware circuits. Increases 
in FPGA configurable logic capacity and decreasing FPGA costs have enabled designers to more readily incorporate FPGAs 
in their designs. FPGA vendors have begun providing configurable soft processor cores that can be synthesized onto their 
FPGA products. While FPGAs with soft processor cores provide designers with increased flexibility, such processors typically 
have degraded performance and energy consumption compared to hard-core processors. In this paper, we study the 
implementation of soft-core processors in FPGAs, and some of the decisions and design tradeoffs which must be made during 
the design process.  
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1. INTRODUCTION 

    Microprocessors on field-programmable 
gate array (FPGA) chips are becoming an 
increasingly popular software implementation 
platform, due to their coexistence on-chip with 
custom logic. Such coexistence can reduce parts 
costs and board sizes, and can improve system 
performance due to reduced communication 
times between processor and FPGA. A hard-core 
processor is laid out on the chip next to the 
FPGA’s configurable logic fabric. In contrast, a 
soft-core processor is synthesized onto the 
FPGA’s fabric, just like any other circuit. 
Compared to hard-core microprocessors on some 
FPGA devices, soft-core processors have the 
advantages of utilizing standard mass-produced 
and hence lower-cost FPGA parts and of enabling 
a custom number of microprocessors per FPGA 
(subject to size constraints) – over 100 soft-core 
processors can fit on modern high-end FPGAs. 
However, soft-core processors have the 
disadvantages of reduced processor performance, 
higher power consumption, and larger size [1]. 

While any microprocessor soft-core could 
conceivably be mapped to an FPGA, FPGA 
vendors have in the past years introduced soft-
core processors specifically targeted for FPGA 
implementation. Such FPGA soft-cores have 
instruction sets, arithmetic-logic units, register 
files, and other features specifically tailored to 
efficiently use FPGA resources, or perhaps more 
accurately, to avoid inefficient use of FPGA 
resources that may occur when synthesizing a 
general soft-core processor to an FPGA. The 

performance overhead of such soft-core 
processors on FPGAs compared to general soft-
core processors on ASICs (application-specific 
integrated circuits) can thus be significantly less 
than the overheads when comparing FPGA versus 
ASIC implementations of general circuits [1]. 

A feature of FPGA soft-core processors is that 
of core configuration by the user (the application 
developer) through the setting of parameters. 
Configurable parameters may include 
instantiating a cache (and specifying its size), or 
instantiating a predefined datapath unit (like a 
multiplier or floating-point unit) and an 
accompanying instruction that uses the 
instantiated unit. Parameterized soft cores 
represent a different problem from that of 
developing custom datapath units and 
accompanying custom instructions, as done in 
application-specific instruction-set processors 
(ASIPs) like the ASIC-oriented ASIPs or FPGA-
oriented ASIPs, due to the “on/off” (or limited 
number of) values of the parameters [1].   
 
2. EXAMPLES OF SOFT PROCESSOR 
CORES 

Today, we are witnesses of the emerging of 
many commercially soft-core processors, as well 
as supporting and development tools; some of 
principal products available are: Altera 
Nios/NiosII, LatticeMico32, and Xilinx 
MicroBlaze. They offer memory and logic 
elements with several Intellectual Property (IP) 
peripherals for the rapid development of System-
on-Programmable-Chip (SoPC) [2]. 



2.1 MicroBlaze Soft Processor Core 
A popular soft processor core example is 

Xilinx’s MicroBlaze that can be customized with 
different peripheral and memory configurations. 
This soft processor core is a 32-bit Reduced 
Instruction Set Computer (RISC). This processor 
has a three-stage pipeline with variable length 
instruction latencies, typically ranging from one 
to three cycles. The tool used to accomplish the 
design is denominated Xilinx Platform Studio and 
with this friendly environment we are able to 
create a MicroBlaze based system instantiating 
and configuring cores from the provided libraries. 

MicroBlaze was constructed around Harvard 
memory architecture. The 2 Local Memory 
Busses (LMB) are used to connect the instruction 
and data memories. The sizes of this memory as 
well as the number of peripheral used in a 
particular design are defined by the user. 
Additionally the On-Chip-Peripheral Bus is used 
to alleviate systems performance bottlenecks and 
is designed to support low-performance/speed 
peripherals such as UART, GPIO, USB, external 
bus controllers. A MicroBlaze system is 
presented in Fig. 6 as a good example of this 
technology. 

The MicroBlaze can operate at up to 200 MHz 
within a Virtex-4 (4VLX40-12) component. The 
range of resources required to implement a 
MicroBlaze soft processor is between 900 and 
2,600 Xilinx Look-Up Tables (LUTs), depending 
on how the processor is configured [2]. 

 

2.2 NIOS II Soft Processor Core 
An another popular soft core processor 

example is Altera's NIOS II that has a load-store 
RISC architecture, in which many architectural 
parameters can be customized at design time. The 
user can decide between 16 or 32 bits of width in 
datapath, register file sizes; as well as cache size 
and custom instructions for the performing of 
user-defined operation in the speeding-up 
customized hardware. Those functionalities are 
supported by the builder development tools, and 
using the Nios II Integrated Development 
Environment (IDE) is possible to build, run, and 
debug software of several platforms. Altera also 
introduces a SOPC builder [38], for the rapidly 
creation and easily evaluation of embedded 
systems. The integration off-the-shelf intellectual 
property (IP) as well as reusable custom 
components is realized in a friendly way, 
diminishing the required time to set up a SoC and 

enabling to construct and designs in hours instead 
of weeks [2]. 

 

2.3 Mico32 Soft Processor Core 
Both Xilinx and Altera created their own 

proprietary soft core processors, making the 
decision to accept a tougher adoption curve in 
exchange for saddling customers with an IP block 
that tended to lock their design into that particular 
FPGA vendor’s devices. 

Like Xilinx’s MicroBlaze and Altera’s Nios, 
Lattice’s Mico32 is a soft-core RISC processor 
that can be easily dropped into an FPGA. Unlike 
the others, however, Mico32 is completely open 
[3]. Rather than take the lock-’em-in approach of 
their competitors, Lattice has gone the open 
source route, cleverly betting that enabling 
processor-based designs on their devices was 
much more important than locking customers into 
their architecture with an IP core. 

LatticeMico32 uses fewer than 2,000 look-up 
tables (LUTs) on an FPGA, which makes it a 
very inexpensive engine for your embedded 
design. Because the processor is soft, you can 
configure it with just the options you want for 
your application. Optional features include things 
like data and instruction caches, user-defined 
instructions, and multipliers. This kind of 
application-specific customizability as well as the 
flexibility to add any number of processors to 
your design with only a small area penalty is the 
kind of flexibility that has made FPGA-based soft 
cores so popular among designers. Mico32 
weighs in with 32 general-purpose registers, up to 
32 external interrupts, and a dual Wishbone 
memory interface. Lattice estimates that the 
processors can run at over 100MHz on their low-
cost 90nm ECP2 FPGAs. 

In keeping with the open-source approach, 
Lattice chose the public domain Wishbone bus 
interface for Mico32 and has already announced a 
variety of available peripherals, including 
memory controllers, asynchronous SRAM, on-
chip block memory, I/O ports, a 32-bit timer, a 
DMA controller, general-purpose I/O (GPIO), an 
I2C master controller, a serial peripheral interface 
(SPI), and a UART. These plug-on peripherals 
dramatically speed up system design, eliminating 
the need to custom-code many of the common 
hardware functions if you’re building a Mico32-
based embedded system [3]. 
 



3. DESIGN CONSIDERATIONS 
 

3.1 Performance and Power 
Two potentially critical system factors include 

the desired functionality and operational 
performance as well as the power required to 
implement the desired system functionality. 
There will typically be a delta between the power 
consumption and level of performance for fixed 
function processor implementations and 
potentially more flexible FPGA-based soft 
processor cores.  

In order to compare the relative performance 
of soft processor cores a common processor 
benchmark approach must be used. Currently the 
most common benchmark is the DMIPS 
(Dhrystone Million Instructions Per Second) 
benchmark. The DMIPS benchmark is based on 
running an algorithm on a targeted processor core 
to measure its integer processing capabilities 
within a defined time period.  

Additional performance considerations include 
the architecture of the soft processor core and its 
suitability for the targeted application. Factors to 
evaluate include: type and size of the memory 
and peripheral bus; size and model of address 
space; type and size of cache (instruction/data); 
type of controllers like DMA and interrupt 
structure; hardware accelerator capability 
(co-processor functionality); functional units such 
as the register file and execution units; type of 
pipeline and strategies to prevent stalls such as 
branch prediction.  

Several factors influence power consumption 
including speed of operation, the number and 
type of resources required to implement the soft 
processor core and the characteristics of the 
FPGA component including static and dynamic 
power consumption vs. operational speed and 
temperature. One of the challenges associated 
with FPGA design is the difficulty of estimating 
power consumption. In an ideal development 
flow, schedule and resources will be allocated to 
design evaluation on a targeted development 
platform with an identical target FPGA 
component and soft processor implementation 
[4]. 

 

3.2 Design and Development Tools 
The features and ease of use of the tool suite 

should be considered along with the tool design 
flow. Effective tool evaluation and analysis is 
important. The following factors can have a 
significant effect on design cycle efficiency: ease 
of use and feature set; design tool flow; 

development environment tool maturity; 
compatibility between major software releases; 
available training and quality of tool tutorials; 
debug and verification capabilities [4]. 

The tool suite (Figure 1) includes a collection 
of traditional software and FPGA design and 
development tools. The interaction between these 
two tool groups is commonly referred to as co-
design or platform development tool. The 
software and soft processor core development 
tools are responsible for the parameterization of 
the soft core and associated peripherals and the 
implementation of processor buses, memory 
maps, interrupt structures and required processor 
peripherals. The software tools also include 
traditional compilation, linking, debug and 
download to the target processor. 

FPGA design tools include the traditional 
development environments for capturing and 
synthesizing HDL code, simulation, place and 
route, debug and download of the design to the 
target FPGA platform. 

 

3.3 Operating System Considerations 
Another important design factor is the ability 

to utilize popular operating systems (OSs). Most 
embedded designs on 32-bit processors include 
an OS to reduce the design time of the software 
by providing an abstraction interface level to the 
software. Most operating systems include the OS 
and any lower-level software required to connect 
the OS to the hardware. This collection of 
software elements is commonly referred to as a 
board support package (BSP) (Figure 1). The 
BSP can include items such as the processor boot 
code and interrupt service routines for 
peripherals. 
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Some important OS considerations include 
interrupt latency, kernel size, implementation of a 
robust set of services, and a collection of full-
featured middleware. Some example middleware 
components include: USB stack; TCPI/IP stack; 
embedded web server; encryption algorithms; 
wireless Ethernet connection.  

Other items which should be considered when 
selecting an OS include the API set, level of IDE 
integration, tasking models, kernel robustness, 
pre-emption, resource allocation, protection 
schemes and OS footprint. 

Processor cores typically have a list of 
certified operating systems that have been pre-
verified. If the design team does not have 
experience with the selected OS, it is 
advantageous for the team to be trained on the 
specifics of the OS to reduce development time 
and eliminate issues that could be encountered 
during development. Typical OS components 
include: task services; priority levels; timer 
management; memory management; application 
programmers interface (API); inter-task 
communication and synchronization [4]. 

 

3.4 Debug Options and Capability 
The debug phase of a design will be iterative 

by nature and can consume a significant 
percentage of a design schedule without the 
correct tools and design access. The ability to 
efficiently debug a design can save weeks design 
effort and schedule. Robust debug features and 
capability are very important design efficiency 
factors. Some of the most effective tools for 
debugging a soft processor core design include: 
simulation (behavioral and timing); timing 
analysis; embedded logic analyzers and 
embedded bus analyzers; software simulators; 
non-intrusive real-time software debugger; trace 
capability; Hardware/Software logic analyzer 
triggers; board-level visual indicators, signal 
access ports and input control signals; 
standardized debug interface via JTAG bus [4]. 
 

3.5 Common Design Oversights 
The following design factors are often 

overlooked by design teams new to implementing 
embedded FPGA soft processors. These factors 
should be given special consideration during each 
design cycle. Making a mistake in any of these 
areas may result in a significant impact to a 
project's cost or schedule. 

Power consumption: Verify consumption on 
an evaluation board before final target board 
design and layout; Underestimating the FPGA 

resources required to implement the complete soft 
processor solution including all peripherals and 
bus structures: Implement design and analyze 
utilization report; Incomplete understanding of 
the impact of a soft processor’s bus structure, 
memory interface overhead and peripheral 
interface speed on overall performance: Verify 
performance and functionality by implementing a 
design on a target evaluation board early in the 
design cycle; Not implementing or maintaining 
sufficient design margin for design migration and 
expansion: Select target FPGA components with 
room for growth with a common package to 
support potential future design enhancements [4]. 
 
4. CONCLUSION 

This paper presents the implementation of 
soft-core processors in FPGAs, and some of the 
decisions and design tradeoffs which must be 
made during the design process. Making 
informed decisions during the design process 
reduces the time required to design, implement, 
debug and test an FPGA soft processor-based 
project. Important design factors are reviewed, 
common design oversights are discussed and soft-
cores examples is presented. 

Soft processor design teams will benefit from 
a system-oriented design approach, which 
considers the long-term effects of design 
decisions at each design phase. With a solid 
understanding of the overall design cycle, 
development tools options, and benefits of key 
design trade-studies, the design team can avoid 
many common design mistakes and oversights 
resulting in a more efficient and flexible design 
cycle. 
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